Zstd & LZ4

Brian Bockelman, Oksana Shadura
University of Lincoln-Nebraska

Background: Compression algorithms comparisons

e As part of the DIANA/HEP to improve ROOT-based analysis, we have continued
work in comparing compression algorithms. For this update, we include:

(©)

(©)

LZ4: lossless data compression algorithm that is focused on compression and decompression
speed.

ZSTD: Relatively new algorithm in the LZ77 family, notable for its highly performant reference
implementation and versatility.

ZLIB [Cloudflare: Update on work to include Cloudflare patches in ROOT.

e We will be comparing algorithms based on three metrics:

(@)

Compression ratio: The original size (numerator) compared with the compressed size
(denominator), measured in unitless data as a size ratio of 1.0 or greater.

Compression speed: How quickly we can make the data smaller, measured in MB/s of input data
consumed.

Decompression speed: How quickly we can reconstruct the original data from the compressed
data, measured in MB/s for the rate at which data is produced from compressed data.

Testing setup - Software

e Performance numbers based on modified ROOT test
“Roottest-io-compression-make” with 2000 events (unless noted).

e Branches:

o https://github.com/oshadura/root/tree/latest-zlib-cms-cloudflare (latest cloudflare zlib, ported into
ROOT Core)

o https://github.com/oshadura/root/tree/brian-zstd (B.Bockelman’s ZSTD integration with CMake
improvements)

o https://github.com/oshadura/root/tree/zstd-default (branch enabling ZSTD as default, used only for
testing purposes)

o https://github.com/oshadura/roottest/tree/zstd-allcompressionlevels (roottest compression test
with extended cases presented here, covering all zlib and zstd compression level)

e Weare trying to measuring the ROOT-level performance - numbers include all
overheads (serialization / deserialization, ROOT library calls, etc).

https://github.com/oshadura/root/tree/latest-zlib-cms-cloudflare
https://github.com/oshadura/root/tree/brian-zstd
https://github.com/oshadura/root/tree/zstd-default
https://github.com/oshadura/roottest/tree/zstd-allcompressionlevels

Testing setup - Hardware

e Platforms utilized:
O Intel Laptop: Intel Haswell Core i7 + SSD
O Intel Server: Intel Haswell Xeon-E5-2683
O AARCH64neon Server: Aarch64 ThunderX
O AARCH64neon+crc32 Server: Aarch64 HiSilicon's Hi1612 processor (Taishan 2180). Includes CRC32

intrinsic instruction.
e Tests were repeated multiple times to give a sense of performance variability.

n facebook.
ZSTD

https://github.com/facebook/zstd.git

ZSTD Background

e Given ZSTD performance claims on their website (facebook.github.io/zstd/), we
should expect:

(@)

O O O O

Better than ZLIB in all metrics: compression speed, decompression speed, and compression ratio.
Like all LZ77 variants, decompression speed should be constant regardless of compression level.
High dynamic range in tradeoff between compression speed and compression ratio.

Does not achieve compression ratio of LZMA.

Does not achieve decompression speed of LZ4.

Larger is better

Write Tests - Write Speed and Compression Ratio

Compression speed vs Cc?mp_rehssion Ratio for compression Largely validates our
algorithms :
Test nodge: Haswell+1 SSD ngnegﬁsgggz'for
o LEMA Note there is some
" ZSTD performance noise
= A~ —— — between ZSTD-1 and
R g ZSTD-2. Not
7 \Z'—'B understood.
5 45 NOTE: Compression
S L74 ratios are flatter than
e expected. Will do
: cross-comparisons with
0 25 50 75 100 125 150 175 LHC files in a future
Compression speed, MB/s fo”ow_up.
ZSTD-1 ZSTD-2 ZSTD-3 ZSTD-4 ZSTD-5 ZSTD-6|
ZSTD-7 ZSTD-8 A ZSTD-9 V ZLIB-1 @ ZLIB-6 @ ZLIB-9
LZMA-1 LZMA-4 LZMA-9 LZ4-1 LZ4-4 LZ4-9
P Test used: roottest-io-compression-make with 2000 events

Larger is better

Raw data: http://jsfiddle.net/oshadura/yzusyhco/show/

http://jsfiddle.net/oshadura/yzusyhco/show/

ZSTD - Read Speed Tests (Intel Laptop)

Decompression speed, Mb/s

ZSTD-1 E— B Decompr.

ZsDT-3 ‘ 475-

g — e Asexpected,

ZSTD-5 s —474 .

ZSTD-6 — decompression rates are

ZSTD-7 470 mostly identical, regardless
B e > of compression level.
(] - . . .
s ZSTD-10 —— e Again, some curious
‘@ ZSTD-11 442 outliers.
£ ZSTD-12 403
E zsTD-13 — 462
o ZSTD-14 — 456
& ZSTD-15 — 465
N ZsTD-16 — 462 —

ZSTD-17 [—430

ZSTD-18 — 382

ZSTD-19 [E—

ZSTD-20 | — 422

ZSTD-21 E—

ZSTD-22 — 453

Speed, MB/s

Test run: 2000 events
TTree-roottest-io-compression-make

Read Speed - Compare across algorithms

Decompression speed, 2000 event TTree, MB/s

B No Compression b

B Zsud
LzZ4

B zib1.28

B LzZvA

Larger is better!

Decompression speed, MB/s

0 1 6 9

Compression level

At the current compression
ratios, reading with
decompression for LZ4 and
ZSTD is actually faster than
reading decompressed:
significantly less data is
coming from the 10
subsystem.

We know LZ4 is significantly
faster than ZSTD on
standalone benchmarks:
likely bottleneck is ROOT 10
API.

ZSTD - LHCB

LHCB B2ppKK2011_md_noPIDstrip.root (22920 entries)

- |74 - 74
= | ZMA - ZMA
ZLIB ZLIB
= == 7STD =-Z8TD
=
2 5
3
1 2
@
N i)
2 s o \
aca \“/ \ §
-
w
v
0 2 4 6 8 10 0 2 4 6 8

Compression level Compression level

C A g
~ 3

2

5

°

M S\ &
< <

< §

\]

L VE

‘\ %

g

\ £

\ \ O

4 A \

CLOUDFLARE K—

ZLIB- cloudflare

ZLIB Progress

e We have been trying to land the Cloudflare ZLIB (“CF-ZLIB”) patches into ROOT.
e ZLIBcurrentversionis1.2.11; CF-ZLIB is based on 1.2.8.

o Difference between 1.2.11 and 1.2.8 are mostly for build systems, bug fixes, and regression fixes in
parts of the library unrelated to ROOT.
o Rebasing Cloudflare to 1.2.11 proved very difficult. Decided to stay on 1.2.8.

e In addition to CloudFlare patches, we have added:
o “Fatlibrary”: When intrinsics are not available at runtime, switch to base implementation.

o Build improvements: Now builds on ARM and Windows.
o adler32 optimization: CloudFlare only optimizes CRC32; ROOT uses adler32.

e Here, we compare CF-ZLIB with upstream ZLIB.

12

Cloudflare ZLIB vs ZLIB - Intel Laptop/Intel Server
(http://jsfiddle.net/oshadura/npp670kr/show)

Compression speed vs Compression Ratio for compression
algorithms

N

4.8

Note: small dynamic
range for y-axis.

Larger is better
_

The CE-ZLIB Les erver / CF-ZL1B

compression ratios do § Laptop / CF-ZLIB
change because £

CF-ZLIB uses a .Server / ZLIB Laptop / ZLIB

different, faster hash |

function. i

0 20 40 60 80 100
Compression speed, MB/s

ZLIB Intel Server Cloudflare-1 ZLIB Intel Server Cloudflare-6

ZLIB Intel Server Cloudflare-9 ZLIB Intel Laptop Cloudflare-1

ZLIB Intel Laptop Cloudflare-6 = ZLIB Intel Laptop Cloudflare-9

ZLIB Intel Server-1 ZLIB Intel Server-6 ZLIB Intel Server-9
V ZLIB Intel Laptop-1 ZLIB Intel Laptop-6 ZLIB Intel Laptop-9

13

http://jsfiddle.net/oshadura/npp670kr/

Compression write speed (Intel Laptop)

Write speed, MB/s
150

100

50

Reductions in speed:

o ZLIB-1:-40%

e ZLIB-6:-28%
ZLIB-9 -72%

B zuB-1
B zLB-6
ZLIB-9

W LZVvAT - CE-ZLIB-9 is the same
W z45 speed as ZLIB-6.

14

Read speed (Intel Laptop)

Read speed, MB/s

600 B zLB-1
B zLBs6 Small improvement of
[Flare's version ~
. Cooud are's versio
7%.
B LzvAA1
400 B Lz45

200

Master Cloudlare

Cloudflare zlib vs zlib -AARCH64+CRC32 HiSilicon's Hi1612 processor
(Taishan 2180) http://jsfiddle.net/oshadura/qcwsx9y4/show

Compression speed vs Compression Ratio for compression

5.5

4.5

Compression ratio

35

2.5

algorithms
Test nodes: AARCH64, AARCH64+crc32
ZLIB/Neon+cre32 CF-ZLIB/Neon+crc32
o 3
CF-ZLIB/Neon
ZLIB/Neon
0 5 10 15 20 25 30 35 40

Compression speed, Mb/s

¥V LZ4 AARCH64neon-4

ZLIB AARCH64neon Cloudflare-1 @ ZLIB AARCH64neon Cloudflare-6

ZLIB AARCH64neon Cloudflare-9 ZLIB AARCH64neoncrc32 Cloudflare-1

ZLIB AARCH64neoncrc32 Cloudflare-6 @ ZLIB AARCH64neoncrc32 Cloudflare-9
ZLIB AARCH64neoncrc32-1 [ZLIB AARCH64neoncrc32-6

ZLIB AARCH64neoncrc32-9 ZLIB AARCH64neon-1 ZLIB AARCH64neon-6
ZLIB AARCH64neon-9 LZMA AARCH64neon-8 LZMA AARCH64neoncrc32-
LZ4 AARCH64neoncrc32-4

Significant improvements for aarch64
with with Neon/CRC32

Improvement for zlib Cloudflare
comparing to master for:
ZLIB-1/Neon+crc32: -31%
ZLIB-6/Neon+crc32: -36%
ZLIB-9/Neon +crc32-9: -69%
ZLIB-1/Neon: -10%
ZLIB-6/Neon: -10%
ZLIB-9/Neon: -50%

0O O O O O O

16

http://jsfiddle.net/oshadura/qcwsx9y4/

Lz4 - Extremely Fast Compression algorithm
http://www.lz4.0rg)

http://www.lz4.org
http://www.lz4.org

LZ4: previous tests

« Winter ROOT I/O Workshop: https:/indico.fnal.gov/event/15154

o https://indico.fnal.gov/event/15154/contribution/8/material/slides/0.pdf (Jim Pivarsky)

https://indico.fnal.gov/event/15154
https://indico.fnal.gov/event/15154/contribution/8/material/slides/0.pdf

Roottest-compression-test: compression test

Compression speed vs Compression Ratio for compression
algorithms
Test node: Haswell+SSD
5i5

LZMA

ZLIB *

4.5 .\\' L74
*\

0 25 50 75 100 125 150
Compression speed, MB/s

Compression ratio

® ZLIB-1 & ZLIB-6 M ZLIB-9 LZMA-1 LZMA-5 LZMA-9
LZ4-1 LZ4-5 LZ4-9

Roottest-compression-test: decompression test

roottest-compression-make

576.637552
600 B Speed, MB/s

435.142440.724541

ar01e8as . B2 TIZRA
285125976

Speed, MB/s

38.992¢361252737.446794

N © Y N bl 9 N X Y N
NS NS NS : W j i O
v o g S
N
s

Roottest-compression-test: compression
RT and compressed size comparison

RT,s L
File size, MB

W RT
557.3

8% - 10%
difference
zlib vs 1z4

150.49

1241 1186 1174 1089 1069 1062 o 1272 1268

N ©] N el o A ») Q
& o & 2 ¢ R S o 5
R I I A A Ay
ZLIB-1 ZLIB-6 ZLIB-9 LZMA-1 LZMA-5 LZMA-9 LZ41 LZ44 LZ49 i ¥ ¥ O@Q
e°o

Smaller is better! Smaller is better!

GeneROOT experience with compression
algorithms (Fons Rademaker)

Results was tested on genomics files used for testing ROOT 1/0 that contain 10% of a human genome. The files contain exact the same data,
only the ROOT compression algorithm differs. For each algorithm, compression level 1 was used. The code to work with these files is in:
https://github.com/GeneROOT/ramtools.

The following observations can be made:
- LZ4 is almost 2x the LZMA file size and 30% larger than the ZLIB version.
- Running the viewing script (reads in a region all 11 columns, i.e. a range of alignment records) we see that:

The LZ4 file, while bigger, is just as fast scanning 5400000 records as the ZLIB file. There is no reason to use LZ4, except to waste space.

Browsing files with GeneROOT/ramtools.git

e Allfiles are identical (I got access to the full collection of files)
e Baskets in compressed files are very small!
e Files are translated from SAM format data to ROOT data format

HOE3UALXX:5:1101:5441428:0 147 7 9644968 60 150M = 9644807 -311
CAACACGATATTATTAACTATATTCACAATAAACCCACGTGCACTGATGGTAGGAATGTAAATTGATACAGCCCTTATGAGGTGGTTGTTTTTACTCCTTTTTTGTGTTTGTGTATGAAATTCTTATTCAAT
GAAAGAAAAGAGTGTATG
JIJIFIFIIIIFIIIIIIIFIIFIIIIIIIIIIIIIFIIIIIIIIFFIIIIIIIIIIIIIIRIIIFIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII0000TIIIIIIIIIIIIIIIRIIIIIIIIIIIIIFIFIIAFFFFF
NM:i:0 MD:Z:150 AS:i:150 XS:i:21 RG:Z:id MC:Z:150M MQ:i:60

HOE3UALXX:2:1117:4842492:0 147 7 9645026 60 16S134M = 9644775 -385
AAAGCTACCACTATGCTAAATTGATACAGCCCTTATGAGGTGGTTGTTTTTACTCCTTTTTTGTGTTTGTGTATGAAATTCTTATTCAATGAAAGAAAAGAGTGTATGATTCATTTGAAAGAAAGCATGACT
CCATTTGTCCTGTACAGC

=T F--<----A-<<T7-A<-AA-<-FTA--T--FT<FAFAF<AF<FFFJAJFFJA<JFTJJFAJ-FJ<FJFFFJJFJFFJJ-FFF<FJFF7FJJFJJFJIFJAI<FIFJIFJIFIIIFJIIIA<FJJIJAA<FFFJFJAJFAFAA NM:i:0
MD:Z:134 AS:i:134 XS:i:21 RG:Z:id MC:Z:146M4S MQ:i:60

Writing GeneROOT files with different compression

Compressed file size, MB

2500 B Ssize of file
Seems to be a

“corner case’
for LZ4...

Writing GeneROOT files with different compression

Time to compress, s
B RTs

Suggestions: to use ROOT
recommended compression levels

ZLIB 6

LZMA 7-8

LZ4 4 [ROOT Winter 1/0O Workshop]
ZSTD Still not validated

LZ4 and zlib-cloudflare - next steps

e LZ4:enableina ROOT (expected in next development release)
o Check LZ41.8.1 with possibility to use compression algorithm dictionaries

e ZLIB-cloudflare: merge into ROOT builtins
e LZ4 & ZLIB-cloudflare: extend rootbench.git with compression tests (artificial and
LHC datasets)

ZSTD - next steps:

e Follow-up with a wider corpus of inputs (e.g., LHCb ntuples, CMS NANOAOD).
e These tests indicate ZSTD would be a versatile addition to ROOT compression formats.
e Worthwhile to explore read rates for LZ4-vs-ZSTD: can we show cases where reading LZ4 is more
significantly faster?
e ZSTD has an additional promising mode where the compression dictionary can be reused between
baskets.
o Facebook reports dictionary reuse provides massive improvements over baseline ZSTD for
compression / decompression speeds and compression ratio when compressing small buffers
(ROOT’s use case!).
o Naive tests did not bear out this claim: however, Facebook tested against a text-based corpus while
we have binary data.
o Needsinvestigation.

28

Thank you for your
attention!

Backup Slides

Larger is better

ZSTD - Haswell x 56core - no SSD
https://jsfiddle.net/oshadura/afé6xt4ni/vieW

Compression ratio

Compression speed vs Compression Ratio for compression

5.25

4.75

4.5

4.25

algorithms

Test node: Haswell+noSSD

ZSTD

LZ4
E— -
0 25 50 75 100 125 150 175
Compression speed, MB/s
® ZSTD-1 ZSTD-2 ZSTD-3 ZSTD-4 ZSTD-5 ZSTD-6
ZSTD-7 ZSTD-8 A ZSTD-9 V ZLIB-1 @ ZLIB-6 ¢ ZLIB-9
LZMA-1 LZMA-4 LZMA-9 @ LZ4-1 & LZ4-5 W LZ4-9

Highcharts.com

31

https://jsfiddle.net/oshadura/af6xt4n1/view

ZLIB-NG

e Forkof ZLIB, cleaning up and merging patches.

e Drop support of 16-bit platforms, ancient compilers

e Merged with all optimizations from Intel and Cloudflare. Supports more
architectures than those forks.

e More actively developed.

e Checkitout: https://github.com/Dead?2/zlib-ng/tree/develop

o Worth watching! Perhaps not enough history to make the jump yet...

32

https://github.com/Dead2/zlib-ng/tree/develop

